IMPACT

Biomass Research at TCCB

Biomass Research at the University of Twente

- Since 1972 biomass research
- Now: 40 fte researcher (PHD, post-doc)
- Research disciplines:
 - Process Technology
 - Catalysis
 - Separations
 - Chemistry/Materials
 - Socioeconomics
- Funding: university board, subsidy agents (local, national, international), companies

Biomass Province Overijssel

- **Biomass available**
- Companies
 - **Biomass collection**
 - Technology owners
 - **Biomass users**

- Support by the Provincial Government
 - Initiating and financing a centre for Research and Innovation

Research

Feedstocks

2nd generation

Forestry residues

Agricultural residues

Energy Crops

Research Topics

- Primary Thermo-chemical / catalytic conversions
 - Liquefaction
 - Gasification
 - Torrefaction
- Upgrading (thermal/chemical/catalytic) of bio-gases and liquids to fuels and chemicals
- Algae production and refinery
- Separations (for fuels and chemicals production)
- E-Fuels
- Artificial photosynthesis (engineering part)
- P-recovery/recycling
- Affinity separations
- Desalination

Scales of Production and Processing

Current Conversion Scales

- Large Scale Central
 - Power plants: 0.5 2 GW
 - Refinery : 2 40 GW
 - 10% chemicals
 - 20% energy
 - 70% fuels
 - Chemical plants 0.1 2 GW

Biomass Production / Availability

- Farm (100 ha): 1.5 MW
- Sugar plantation: 0.5 2 GW
- Wood farming: 10MW 1 GW
- Paper mill: 0.05 1 GW

on the largest farming complexes and paper mills

> Small scale availability requires pretreatment and very efficient logistics

In 2050 Biomass is used for:

- Food
- Feed
- Dedicated liquid fuels
 - Long distance heavy transport
 - (short distance \rightarrow electric)
 - Aviation (jet fuel)
- **Chemicals & Materials**
 - Acids
 - Ethylene / propylene
 - aromatics
 - Plastics
 - Specialties....

Energy Storage Systems						
	MJ/L	MJ/kg				
Gasoline	32	43				
Methanol	17	21				
Ethanol	22	28				
Liquid hydrogen	8.4	120				
Hydrogen 350 bar	2.8	120				
Hydrogen hydride	13	6				
Lead battery	0.24	0.12				
Li-ion battery	1.2 - 2	0.84				

In a perfect world, strong technological concepts would always evolve into commercial reality. But that ideal is relatively rare[#].

@Judy Estrin, CEE

Processing Routes to Fuels & Chemicals

Processing Routes to Fuels & Chemicals (cont.)

Oil from Residues

Central refinery

Decentralized Pretreatment & Central Refining

Pyrolysis Oil

Physical Characteristics and Elemental Composition of Pyrolysis Oil, Hydrothermal Liquefaction Oil, and Fossil Heavy Fuel Oil

Characteristic	Pyrolysis Oil	Hydrothermal	Heavy Fuel
		Liquefaction Oil	Oil
Water content (w%)	15-35	3-6	0.1
C (w%, dry)	50-64	65-82	85
H (w%, dry)	5.2-7	6-9	11.1
O (w%, dry)	35-40	6-20	1.0
N (w%, dry)	0.05-0.4	nd	0.3
S (w%, dry)	0.05-0.3	nd	2.3
Heating value (MJ/kg)	16.5–19	25-35	40
(LHV)			
Viscosity (cp at ~50°C	() 40-150	$\sim 10^4$	180
pН	2.4		
Total acidity number			
(TAN)	70-150	nd	
Specific gravity	1.15-1.25	1.05-1.15	0.90
MW (g/mol)	600-700	500-1000	180-400

UNIVERSITY OF TWENTE.

Upgrading is required!

Lignin is present in pyrolysis oil (emulsion)

Pyrolysis: Process Development Units at UT

PyRos pilot plant – 30 kg/hr

Fluid bed - 1 kg /hr

Co-Processing Pyrolysis Oil in Crude Oil Refineries

- Partnering with existing "fossil" refineries
 - Existing products / markets
 - Using existing infrastructure (refineries, logistics, fueling stations)
 - Large volumes biofuels possible

- For 2 and 3 'upgrading' of pyrolysis oil needed
- From 2-3: increase in upgrading severity needed
- Option 2 "Deoxygenation important"

FCC of Hydrotreated Pyrolysis Oil

- Hydrotreating in autoclave (290 bar)
- MAT tests with 80/20 mixture of long residue and hydrotreated pyrolysis oil (lab-scale)
- Next stage → pilot testing

Hydrotreating temp °C			230	260	300	330	340		
Oxygen content oil wt%			28	24.4	22.6	15.5	16.9		
MAT FCC 20 wt% hydrotreated oil 80 wt% long residue									
			Long Residue						
Cat/oil raio)		3.1	4.3	3.4	3.4	3.7	3.8	
LPG yield			8.5	10.1	9.4	9.6	8.9	9.2	
Gasoline y	ield		44	40.2	41.7	43.4	43.5	43	
LCO yield			25.2	21.3	22.2	22.5	23.8	24	
Dry gas			1.5	2.3	21.1	1.8	1.9	2	
Coke yield			5.9	7.2	6.6	5.2	5.5	5.8	
Other (HCO, Slurry Oil) 14.8		14.8	10.8	11	11.6	12.2	12		
Water			0	7.9	6.7	5.7	3.9	3.9	

Gasification Route: Reforming

- **Reforming of Biomass**
- Biomass + $H_2O \rightarrow CO + H_2$ (Ni) $(CH_4 + H_2O \rightarrow CO + 3H_2)$
- Allows smaller scale operation
 - Lower T
 - No oxygen needed
- R&D phase

 - Severe problems for solid biomass Liquid biomass shows promising results

Pyrolysis oil as Feed

UNIVERSITY OF TWENTE.

Concluding Remarks

- Large volumes of residues can be made available (and scales match with lower limit of fossil feed processing → co-processing)
- Liquid biofuels from forestry, agriculture and paper/pulp residues is the R&D – Demonstration stage (5-10 years for full scale commercial operation)
 - Liquefaction Refining
 - Gasification Gas conversion
- Winners (technology level and fuel type) cannot be identified yet, hence, multiple diverse approaches should be investigated.
- For quick introduction of large amounts of biofuels, it is essential to integrate and to partner-up with existing industries and markets.
- For a fast development trajectory it is essential to adapt the knowledge available for making fossil fuels to lignocellulose-based fuels.
 - Catalysis
 - Process Technology

Thanks for your attention!

s.kersten@utwente.nl